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SUMMARY

Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions
and so operational models use high-order finite differences on regular structured grids. This precludes the
use of local refinement; techniques allowing local refinement are either expensive (e.g. high-order finite
element techniques) or have reduced accuracy at changes in resolution (e.g. unstructured finite volume
with linear differencing).

We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from
a finite-volume model written using OpenFOAM. A second-/third-order accurate differencing scheme is
applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results
are as accurate as equivalent resolution spectral methods. Using lower-order differencing reduces accuracy
at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces
the global accuracy over a 15-day simulation. We have, therefore, introduced a scheme that fits a 2D
cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement
of the mountain improves the accuracy after a 15-day simulation.

This is a more severe test of local mesh refinement for global simulations than has been presented but
a realistic test if these techniques are to be used operationally. These efficient, high-order, schemes may
make it possible for local mesh refinement to be used by weather and climate forecast models. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive and variable resolution modelling of the atmosphere is an expanding area of research
due to the potential benefits to, for example, regional climate and weather forecasting and cyclone
tracking e.g. [1–6]. However, still there are challenges before these techniques can compete in
accuracy and efficiency with techniques used for fully structured, uniform grids.

There are a number of ways of achieving variable resolution: Berger and Oliger [1] used nesting
of finer structured grids within coarser grids, Bacon et al. [4] use a Delaunay triangulation of two-
dimensional space and Iske and Kaser [7] use a Voronoi decomposition of space. Alternatively,
one can deform a structured mesh [8] or refinement patterns must persist all around the globe [9].
We have implemented the shallow-water equations in OpenFOAM (www.opencfd.co.uk),
which can handle any mesh structure. This allows us to test the accuracy of different mesh
structures.

Finite-volume models are appropriate for atmospheric modelling due to their inherent conserva-
tion, availability of bounded differencing schemes [10], applicability to any mesh structure [7] and
availability of efficient, segregated implicit solution algorithms [11]. Cell-centre/face-centre stag-
gered finite-volume algorithms usually use linear differencing, however, which is only first-order
accurate where the mesh is non-uniform [12] and which we will show is not sufficient for global
atmospheric models. We will present results using a second-/third-order differencing scheme that
maintains this accuracy regardless of mesh uniformity or regularity.

The shallow-water equations describe much of the atmosphere’s behaviour in the horizontal,
allowing tests of discretization. The results of the Williamson [13] test case are presented with west-
erly flow over a mid-latitude mountain. This test case enables the examination of the effect of local
mesh refinement on global errors. Low resolution can result in poor representation of orography and,
in the real atmosphere, orographic impacts on the flow can be due to small-scale diabatic processes
such as orographic rainfall. There are numerical difficulties due to the changes in accuracy where
the mesh becomes finer; however, grid-scale waves travelling from the fine mesh to the coarse mesh
could be refracted or reflected. The change in accuracy could alter the geostrophic balance, which
will be a source of unbalanced waves. These problems will be severe in this adiabatic, frictionless
test case. A more complete model of the atmosphere will suffer from the same errors where the
mesh changes resolution but should also benefit from more accurate representation of diabatic
terms.

The model, including the new differencing scheme and the meshes used, is described in Section 2,
results are presented in Section 3 and final conclusions drawn in Section 4.

2. MODEL DESCRIPTION

2.1. Williamson et al. test case [13]
The test case has an isolated, mid-latitude mountain and initial conditions consisting of shear-
free westerly flow in geostrophic balance with the geopotential height. As the flow hits the
mountain, the balance between the Coriolis force and pressure gradient is reduced, generating
gravity and Rossby waves. After 15 days these Rossby waves spread around both hemispheres.
A reference solution calculated from a very high-resolution spectral model is available from
ftp.ucar.edu/chammp/shallow.
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2.2. OpenFOAM

OpenFOAM is a public domain, open source computational fluid dynamics toolkit developed
and released by OpenCFD (www.opencfd.co.uk) using the finite-volume technique on three-
dimensional arbitrarily unstructured meshes. (This means that the cells can be any 3D shape.)
Some of the coding practices are described by Weller et al. [14] and the unstructured finite-volume
method by Ferziger and Perić [11].

2.3. A shallow-water equation solver written using OpenFOAM

The 2D shallow-water equations in a 3D geometry consist of the momentum and continuity
equations

�hU
�t

+ ∇ · hUU = −X× hU − gh∇(h + h0),
�h
�t

+ ∇ · hU = 0 (1)

where U is the horizontal velocity, ∇ is in the horizontal direction, h is the height of the fluid
surface above the solid surface, h0 is the height of the solid surface above a reference height, X
is the rotation rate of the globe and g is the scalar acceleration due to gravity.

These equations have been implemented in OpenFOAM on a 2D spherical mesh in Cartesian
co-ordinates. The cell volumes, cell centres, face centres and face areas have been modified for
the curved, spherical domain. The prognostic variables are the cell-average momentum, hU, and
height, h, and, to avoid a computational mode, the mass flux between cells (normal to the faces),
�. The momentum equation is integrated over each cell and discretized using Gauss’ divergence
theorem

�V

�t
((hU)n+1 − (hU)n) + ∑

(�U)
n+1/2
f = −�V (X× hU + gh∇c(h + h0))

n+1/2 (2)

where �V is the cell volume, �t is the time step, the superscript represents the time step,
∑

means
summation over all the faces of a cell, subscript f means interpolation from cell averages to face
averages and ∇c is the discretized cell-average gradient. This equation is interpolated onto the
cell faces and the dot product is taken with the face-area vector, �S (normal to the face with the
magnitude of the face area), to give an equation for the flux, �(= (hU)f · �S)

�n+1 = 1

Af
(�n + (H − �tX× hU)

n+1/2
f · �S − �tghn+1/2

f ∇n+1/2
f (h + h0)) (3)

where H = −(�t/�V )
∑

��NUN , A = 1 + �t/�V
∑

(�/hf)�, ∇f is the discretized gradient at
the face dot producted with �S and � and �N are interpolation factors from cell-average values to
face average values. Equation (3) is substituted into the continuity equation to obtain an equation
for the height

�V

�t
(hn+1 − hn) + ∑

�n+1/2 = 0 (4)

The second-order, two time-level Crank–Nicholson scheme is used to solve the discretized
momentum and height equations implicitly (separately and with non-linear terms lagged) and the
flux equation explicitly. The lagged new time-level values are updated and all equations are solved
once again at each time step. This solution procedure is described in more detail by Ferziger
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and Perić [11]. The old time-level flux is interpolated from the old time-level momentum so that
they remain consistent. This separation by one time step between the momentum and the flux is
enough so that no computational mode is excited in this slowly evolving case where all features
are well resolved. For cases in which grid-scale gravity waves are excited, the old time-level flux is
blended with the old momentum so that they remain consistent while removing the computational
mode. The details of this blending are the subject of current research. It remains to define how the
interpolations from cell averages to faces and gradients are estimated.

2.4. Interpolations and gradients

To make discretization on arbitrarily unstructured meshes simple, cell-volume average quantities
are approximated by the cell-centre value and face-area averages are approximated by face-centre
values. These approximations are second-order accurate but we have still found advantage from
using higher-order schemes to interpolate from cell-centre values to face centres and for estimating
gradients.

2.4.1. The quasi-cubic differencing scheme. A simple way to interpolate onto a face is by using
the values and gradients in the two adjacent cells, where the cell-centre gradients are calculated
using Gauss’ theorem and the face values. This is theoretically only first-order accurate but if the
mesh is uniform, polynomials of up to fourth order can be discretized exactly.

2.4.2. The multidimensional polynomial fit differencing scheme. We have implemented a scheme
based on [15] that fits a polynomial around each cell for interpolates and gradients. A 2D cubic
polynomial is fit for the neighbourhood of each cell using a local co-ordinate system. The 2D cubic
has 10 unknowns; so a stencil of at least 10 cells surrounding each cell is found. As there can be
more cells in each stencil than unknowns, a least-squares fit using singular value decomposition is
found with the central cells in the stencil weighted so that the fit is most accurate near the centre.
The singular value decomposition needs to be performed only once per cell at the beginning of the
simulation, leaving just n multiplies to calculate an interpolation or a gradient component per time
step, where n is the size of the stencil. As this scheme creates a large computational molecule, it
is not used to solve equations implicitly as it would create too many inter-cell dependencies and
make the linearized equation set expensive to solve. It is, therefore, used as a deferred correction
on linear differencing, as described by Ferziger and Perić [11].

2.5. Model setup: meshes and time step

Results are presented for three different meshes of the globe; two reduced latitude–longitude
meshes, one of which has 2:1 refinement of the mountain and the other a hexagonal–icosahedral
mesh as used by Thuburn [16]. A time step of 20min is used for consistency with Jakob [17].

3. RESULTS

The method is well balanced in the presence of orography: the mountain test case was run for 15
days starting from a geostrophically balanced resting state and the maximum speed generated was
0.6 cm/s. This was due to inaccuracies in the initial fluid height field not giving an exactly constant
total height when added to the mountain height. This initial error persists since total energy is
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conserved to within 0.05%, vorticity to within 10−7% and enstrophy to within 0.1% over the 15
days.

3.1. Comparisons with previously published results

After 15 days, errors in comparison with the reference solution are compared with published
errors on grids with similar resolution. Figure 1 shows errors of the spectral model of [17]
using 128×64 grid points, the model on a hexagonal–icosahedral mesh of [16] and OpenFOAM
results on the reduced latitude–longitude mesh without refinement of the mountain and on the
same hexagonal mesh as [16]. All error fields have oscillations around the mountain, especially
the spectral model. For the other models, these are due to oscillations in the spectral reference
solution, since discontinuities are not well represented in spectral space.

The OpenFOAM errors on the reduced latitude–longitude mesh are slightly lower than the
spectral model in the tropics but larger towards the north pole. This is due to the coarser mesh
towards the poles and errors introduced by the unrefinement patterns themselves. The order of the
scheme for estimating values at points has been tested by comparing the discretized gradients of
third- and fourth-order polynomials with the exact gradients. The cubic fit scheme gives fourth-
order accuracy where the mesh is uniform and third-order accuracy at the refinement patterns,
which could contribute to the larger errors towards the poles.

The OpenFOAM errors on the hexagonal icosahedral mesh are similar but slightly lower
than those of [16] on the same mesh. Thuburn [16] used quadratic differencing rather than
cubic. This test case was also run by Lashley [15] and the results improved with higher-order
differencing.

Figure 1. Errors after 15 days for the flow over a mid-latitude mountain. Contour interval is 5m.
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Figure 2. Errors after 15 days for the flow over a mid-latitude mountain on reduced latitude–longitude
meshes. Contour interval is 5m.

3.2. Comparisons between OpenFOAM results

The uniformity of the hexagonal icosahedral mesh reduces the high latitude errors seen for the
reduced latitude-longitude mesh (Figure 1).

Figure 2 shows results from the latitude–longitude meshes with and without refinement of
the mountain and using the quasi-cubic scheme and the new cubic fit scheme. These runs were
initialized with the cell value set to the area average rather than the cell-centre value. The dif-
ferences are taken against an OpenFOAM reference solution with a resolution of 256× 512,
coarser than the resolution of the spectral model (320 × 640) and so less accurate (in the
tropics).

The errors are lower using the new cubic fit scheme. Importantly, the errors reduce when the
mountain is refined whereas the errors actually increase when the mountain is refined using the
quasi-cubic scheme. Also, oscillations occur at the mesh refinement boundary around the mountain
when using the quasi-cubic scheme. For adiabatic, balanced cases such as this which are run for
a long time, mesh refinement can actually degrade the errors globally if differencing schemes
are used, which give only first-order accuracy where the mesh is non-uniform. However, using
the cubic fit scheme of [15], which gives higher-order accuracy where the mesh is non-uniform,
mesh refinement in this case can lead to lower errors globally. This is crucially important if mesh
refinement is to be used for weather or climate forecasting.

4. CONCLUSIONS

We have demonstrated that arbitrarily unstructured finite-volume modelling using OpenFOAM
can compete with the accuracy of high-order structured techniques. A cubic differencing scheme
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has been implemented that maintains accuracy where the mesh is non-uniform. Hence, 2:1 re-
finement of the mountain increases the accuracy globally. Using the previous quasi-cubic scheme,
the order reduces to first where the mesh is not uniform and so 2:1 refinement patterns can
actually make the global solution less accurate. This case is particularly sensitive to errors at
refinement patterns because it is finely balanced, adiabatic and frictionless; so any errors intro-
duced in the long simulation persist and grow. A more complete model of the atmosphere will be
sensitive in the same way but local refinement will offer more advantages where there are diabatic
processes.

We have also demonstrated that a hexagonal–icosahedral mesh of the sphere gives accurate
solutions since the mesh is nearly uniform globally. Unstructured meshes of polygonal shapes
such as hexagons and pentagons could produce gradual local refinement although 2:1 refinement
is more straightforward and efficient for high-order schemes.
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11. Ferziger JH, Perić M. Computational Methods for Fluid Dynamics. Springer: Berlin, 1996.
12. Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML. A conservative adaptive projection method for

the variable density incompressible Navier–Stokes equations. Journal of Computational Physics 1998; 142(1):
1–46.

13. Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN. A standard test set for numerical
approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 1992; 102:
211–224.

14. Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using
object-oriented techniques. Computers in Physics 1998; 12(6):620–631.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1589–1596
DOI: 10.1002/fld



1596 H. WELLER AND H. G. WELLER

15. Lashley RK. Automatic generation of accurate advection schemes on structured grids and their application to
meteorological problems. Ph.D. Thesis, Departments of Mathematics and Meteorology, University of Reading,
2002.

16. Thuburn J. A PV-based shallow-water model on a hexagonal—icosahedral grid. Monthly Weather Review 1997;
125(9):2328–2347.

17. Jakob R, Hack JJ, Williamson DL. Solutions to the shallow water test set using the spectral transform method.
Technical Note NCAR/TN−388+STR, Climate and Global Dynamics Division, National Center for Atmospheric
Research, Boulder, CO, May 1993.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1589–1596
DOI: 10.1002/fld


